Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 225
Filter
1.
Environ Sci Technol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709795

ABSTRACT

Forecasting alterations in ambient air pollution and the consequent health implications is crucial for safeguarding public health, advancing environmental sustainability, informing economic decision making, and promoting appropriate policy and regulatory action. However, predicting such changes poses a substantial challenge, requiring accurate data, sophisticated modeling methodologies, and a meticulous evaluation of multiple drivers. In this study, we calculate premature deaths due to ambient fine particulate matter (PM2.5) exposure in India from the 2020s (2016-2020) to the 2100s (2095-2100) under four different socioeconomic and climate scenarios (SSPs) based on four CMIP6 models. PM2.5 concentrations decreased in all SSP scenarios except for SSP3-7.0, with the lowest concentration observed in SSP1-2.6. The results indicate an upward trend in the five-year average number of deaths across all scenarios, ranging from 1.01 million in the 2020s to 4.12-5.44 million in the 2100s. Further analysis revealed that the benefits of reducing PM2.5 concentrations under all scenarios are largely mitigated by population aging and growth. These findings underscore the importance of proactive measures and an integrated approach in India to improve atmospheric quality and reduce vulnerability to aging under changing climate conditions.

2.
Sci Total Environ ; 927: 172337, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608908

ABSTRACT

Fire emissions in Southeast Asia transported to southern China every spring (March-May), influencing not only the air quality but also the weather and climate. However, the multi-year variations and magnitude of this impact on aerosol radiation forcing in southern China remain unclear. Here, we quantified the multi-year contributions of fire emissions in Indo-China Peninsula (ICP) region to aerosol radiation forcing in the various southern Chinese provinces during the fire season (March-May) of 2013-2019 combining the 3-dimension chemical transport model and the Column Radiation Model (CRM) simulations. The models' evaluations showed they reasonably capture the temporal and spatial distribution of surface aerosol concentrations and column aerosol optical properties over the study regions. The fire emissions over the ICP region were found to increase the aerosol optical depth (AOD) value by 0.1 (15 %) and reduce the single scattering albedo (SSA) in three southern regions of China (Yunnan-YN, Guangxi-GX, and Guangdong-GD from west to east), owing to increases in the proportions of black carbon (BC, 0.4 % ± 0.1 %) and organic carbon (OC, 3.0 % ± 0.9 %) within the aerosol compositions. The transported smoke aerosols cooled surface but heated the atmosphere in the southern China regions, with the largest mean reduction of -5 Wm-2 (-3 %) in surface shortwave radiation forcing and the maximum daily contributions of about -15 Wm-2 (-15 %) to the atmosphere radiation forcing in the GX region, followed by the GD and YN regions. The impacts of ICP fire emissions on aerosol optical and radiative parameters declined during 2013-2019, with the highest rate of 0.393 ± 0.478 Wm-2 yr-1 in the GX for the shortwave radiation forcing in the atmosphere. Besides, their yearly changes in the contribution were consistent with the annual fire emissions in the ICP region. Such strong radiative perturbations of ICP fire emissions were expected to influence regional meteorology in southern China and should be considered in the climate simulations.

3.
China CDC Wkly ; 6(13): 249-253, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38633202

ABSTRACT

What is already known on this topic?: Exposure to fine particulate matter (PM2.5) was linked to endocrine hormone disruption in the reproductive system. Nonetheless, it was unclear which specific components of PM2.5 were primarily responsible for these associations. What is added by this report?: The study presented the initial epidemiological evidence that brief exposure to PM2.5 can elevate estradiol levels in postmenopausal women. Various particle components had unique effects, with water-soluble ions and specific inorganic elements like Ag, As, Cd, Hg, Ni, Sb, Se, Sn, and Tl potentially playing significant roles in increasing estradiol levels. What are the implications for public health practice?: The study established that the prevalence of air pollution, along with its specific components, has been recognized as a novel risk factor affecting the balance of sex hormones.

4.
Opt Express ; 32(6): 8496-8505, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571107

ABSTRACT

Flexibly wearable sensors are widely applied in health monitoring and personalized therapy. Multiple-node sensing is essential for mastering the health condition holistically. In this work, we report a multi-node wearable optical sensor (MNWOS) based on the cascade of microfiber Bragg gratings (µFBG), which features the reflective operation mode and ultra-compact size, facilitating the functional integration in a flexible substrate pad. The MNWOS can realize multipoint monitoring on physical variables, such as temperature and pressure, in both static and dynamic modes. Furthermore, the eccentric package configuration endows the MNWOS with the discernibility of bending direction in addition to the bending angle sensing. The multi-parameter sensing is realized by solving the sensing matrix that represents different sensitivity regarding the bending and temperature between FBGs. The MNWOS offers great prospect for the development of human-machine interfaces and medical and health detection.

6.
Environ Pollut ; 347: 123810, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38493867

ABSTRACT

Brazil has experienced unprecedented wildfires recently. We aimed to investigate the association of wildfire-related fine particulate matter (PM2.5) with cause-specific cardiovascular mortality, and to estimate the attributable mortality burden. Exposure to wildfire-related PM2.5 was defined as exposure to annual mean wildfire-related PM2.5 concentrations in the 1-year prior to death. The variant difference-in-differences method was employed to explore the wildfire-related PM2.5-cardiovascular mortality association. We found that, in Brazil, compared with the population in the first quartile (Q1: ≤1.82 µg/m3) of wildfire-related PM2.5 exposure, those in the fourth quartile (Q4: 4.22-17.12 µg/m3) of wildfire-related PM2.5 exposure had a 2.2% (RR: 1.022, 95% CI: 1.013-1.032) higher risk for total cardiovascular mortality, 3.1% (RR: 1.031, 95% CI: 1.014-1.048) for ischaemic heart disease mortality, and 2.0% (RR: 1.020, 95% CI: 1.002-1.038) for stroke mortality. From 2010 to 2018, an estimation of 35,847 (95% CI: 22,424-49,177) cardiovascular deaths, representing 17.77 (95% CI: 11.12-24.38) per 100,000 population, were attributable to wildfire-related PM2.5 exposure. Targeted health promotion strategies should be developed for local governments to protect the public from the risk of wildfire-related cardiovascular premature deaths.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Wildfires , Humans , Brazil/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Particulate Matter/analysis , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis
7.
Sci Bull (Beijing) ; 69(1): 114-124, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37989675

ABSTRACT

As one of the world's largest emitters of greenhouse gases, China has set itself the ambitious goal of achieving carbon peaking and carbon neutrality. Therefore, it is crucial to quantify the magnitude and trend of sources and sinks of atmospheric carbon dioxide (CO2), and to monitor China's progress toward these goals. Using state-of-the-art datasets and models, this study comprehensively estimated the anthropogenic CO2 emissions from energy, industrial processes and product use, and waste along with natural sources and sinks of CO2 for all of China during 1980-2021. To recognize the differences among various methods of estimating greenhouse emissions, the estimates are compared with China's National Greenhouse Gas Inventories (NGHGIs) for 1994, 2005, 2010, 2012, and 2014. Anthropogenic CO2 emissions in China have increased by 7.39 times from 1980 to 12.77 Gt CO2 a-1 in 2021. While benefiting from ecological projects (e.g., Three Norths Shelter Forest System Project), the land carbon sink in China has reached 1.65 Gt CO2 a-1 averaged through 2010-2021, which is almost 15.81 times that of the carbon sink in the 1980s. On average, China's terrestrial ecosystems offset 14.69% ± 2.49% of anthropogenic CO2 emissions through 2010-2021. Two provincial-level administrative regions of China, Xizang and Qinghai, have achieved carbon neutrality according to our estimates, but nearly half of the administrative regions of China have terrestrial carbon sink offsets of less than 10% of anthropogenic CO2 emissions. This study indicated a high level of consistency between NGHGIs and various datasets used for estimating fossil CO2 emissions, but found notable differences for land carbon sinks. Future estimates of the terrestrial carbon sinks of NGHGIs urgently need to be verified with process-based models which integrate the comprehensive carbon cycle processes.

8.
Adv Mater ; 36(7): e2307799, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37877177

ABSTRACT

5-Hydroxymethylfurfural (HMF), one of the essential C6 biomass derivatives, has been deeply investigated in electrocatalytic reduction upgrading. Nevertheless, the high product selectivity and rational design strategy of electrocatalysts for electrocatalytic HMF reduction is still a challenge. Here, a high selective electro-reduction of HMF to dimethylfuran (DMF) on palladium (Pd) single atom loaded on titanium dioxide (Pd SA/TiO2 ) via hydrogen spillover and adsorption configuration adjustment in neutral electrolytes is achieved. Combining density functional theory calculations and in situ characterization, it is revealed that Pd single atom could weaken the interaction between Pd atoms and adsorbed hydrogen (*H) to promote the *H spillover for increasing *H coverage on the surface and maintain the tilted adsorption configuration to activate C═O bond; thus the selectivity of DMF on Pd SA/TiO2 increases to 90.33%. Besides, it is elaborated that low *H coverage on TiO2 favors the formation of bis(hydroxymethyl)hydro-furoin (BHH), and the flat adsorption configuration of HMF on Pd nanoparticles benefits to form 2,5-dihydroxymethylfuran (DHMF). This work provides a promising approach for modifying electrocatalysts to realize the selective electroreduction of HMF to value-added products.

9.
J Vis Exp ; (200)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37930003

ABSTRACT

Knee osteoarthritis (KOA) is one of the most frequently encountered diseases in the orthopedic department, which seriously reduces the quality of life of people with KOA. Among several pathogenic factors, the biomechanical imbalance of the knee joint is one of the main causes of KOA. Acupotomology believes that restoring the mechanical balance of the knee joint is the key to treating KOA. Clinical studies have shown that acupotomy can effectively reduce pain and improve knee mobility by reducing adhesion, contracture of soft tissues, and stress concentration points in muscles and tendons around the knee joint. In this protocol, we used the modified Videman method to establish a KOA model by immobilizing the left hindlimb in a straight position. We have outlined the method of operation and the precautions related to acupotomy in detail and evaluated the efficacy of acupotomy in conjunction with the theory of "Modulating Muscles and Tendons to Treat Bone Disorders" through the detection of the mechanical properties of quadriceps femoris and tendon, as well as cartilage mechanics and morphology. The results show that acupotomy has a protective effect on cartilage by adjusting the mechanical properties of the soft tissues around the knee joint, improving the cartilage stress environment, and delaying cartilage degeneration.


Subject(s)
Acupuncture Therapy , Osteoarthritis, Knee , Humans , Animals , Rabbits , Osteoarthritis, Knee/therapy , Quality of Life , Acupuncture Therapy/methods , Knee Joint/surgery , Cartilage
10.
J Biomater Appl ; 38(5): 614-628, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37918422

ABSTRACT

Conventional cancer treatments are highly toxic and ineffective; therefore, it is essential to develop less toxic and minimally invasive treatment methods. A pH/Near Infra-red (NIR) dual-responsive, nano-injectable smart hydrogel was fabricated by incorporating CuS nanoparticles into the hydrogel networks formed by a random copolymer of N-isopropylacrylamide (NIPAM) and double-bond functionalized uracil. Microstructural characterizations of synthesized polymer and hydrogels were carried out using transmission electron microscope (TEM), scanning electron microscope (SEM), nuclear magnetic resonance (NMR) and fourier transform infrared spectroscopy (FT-IR). Multiple hydrogen bonding interactions between uracils function as physical cross-linking points to construct the network structure of the polymeric nanogel without the addition of additional cross-linking agents, ensuring the material's safety. The amino group on the structure of uracil gives the uracil-modified polymeric hydrogel excellent pH responsiveness. Notably, as a temperature-responsive material, poly (N-isopropylacrylamide) (PNIPAM) nanogel solution can achieve in situ gel formation (within 100 s at 37°C) above its lower critical solution temperature (LCST), granting injectability to polymeric solutions. Moreover, using a hierarchical construction strategy, the variable loading of DOX and CuS was achieved. First, a heterogeneous system was created by encapsulating doxorubicin (DOX) inside the nanogel via hydrophobic and π-π stacking interactions, followed by the introduction of CuS nanoparticles as photosensitizers outside of the nanogels. Due to the presence of CuS nanoparticles, the gel is able to convert NIR light into local heat to enhance the destruction of tumor cells while simultaneously achieving rapid in situ gel formation. The in situ-forming hydrogel showed promising tissue biocompatibility. The in vitro antitumor test demonstrated the capacity of the nanocomposite hydrogel for chemo-photothermal synergistic therapy. Therefore, this prepared platform has the potential to become a safe and effective, smart-responsive drug carrier for chemotherapy and PTT synergy, a minimally invasive material for tumor treatment.


Subject(s)
Hydrogels , Nanoparticles , Hydrogels/chemistry , Spectroscopy, Fourier Transform Infrared , Drug Delivery Systems/methods , Doxorubicin , Polymers/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Uracil
11.
Nature ; 621(7979): 521-529, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37730866

ABSTRACT

Wildfires are thought to be increasing in severity and frequency as a result of climate change1-5. Air pollution from landscape fires can negatively affect human health4-6, but human exposure to landscape fire-sourced (LFS) air pollution has not been well characterized at the global scale7-23. Here, we estimate global daily LFS outdoor fine particulate matter (PM2.5) and surface ozone concentrations at 0.25° × 0.25° resolution during the period 2000-2019 with the help of machine learning and chemical transport models. We found that overall population-weighted average LFS PM2.5 and ozone concentrations were 2.5 µg m-3 (6.1% of all-source PM2.5) and 3.2 µg m-3 (3.6% of all-source ozone), respectively, in 2010-2019, with a slight increase for PM2.5, but not for ozone, compared with 2000-2009. Central Africa, Southeast Asia, South America and Siberia experienced the highest LFS PM2.5 and ozone concentrations. The concentrations of LFS PM2.5 and ozone were about four times higher in low-income countries than in high-income countries. During the period 2010-2019, 2.18 billion people were exposed to at least 1 day of substantial LFS air pollution per year, with each person in the world having, on average, 9.9 days of exposure per year. These two metrics increased by 6.8% and 2.1%, respectively, compared with 2000-2009. Overall, we find that the global population is increasingly exposed to LFS air pollution, with socioeconomic disparities.


Subject(s)
Air Pollution , Fires , Ozone , Particulate Matter , Humans , Air Pollution/analysis , Air Pollution/statistics & numerical data , Fires/statistics & numerical data , Ozone/analysis , Ozone/supply & distribution , Particulate Matter/analysis , Particulate Matter/supply & distribution , Wildfires/statistics & numerical data , Socioeconomic Disparities in Health
12.
Environ Sci Pollut Res Int ; 30(45): 100907-100919, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37644267

ABSTRACT

ZSM-5 zeolite has been considered a promising adsorbent for capturing VOCs. However, its hydrophilicity and narrow micropore structure limit their practical application especially under humid atmospheres. In this study, the pure silica mesoporous molecular sieve MCM-41 was assembled on ZSM-5 zeolite with different SiO2/Al2O3 ratios (SARs) via a surfactant-mediated recrystallization method. Then, its adsorption-desorption behaviors were investigated using n-hexane, toluene, and ethyl acetate as VOC model molecules. The results showed that the hydrophobicity of ZSM-5/MCM-41 composites and their VOC diffusion behaviors were significantly improved. Furthermore, the SARs of the ZSM-5 precursors had a remarkable influence on the adsorption performance of ZSM-5/MCM-41 composites. ZSM-5/MCM-41(130) was the optimum option, and its dynamic adsorption capacity for ethyl acetate (111.30 mg·g-1) was higher than that of the corresponding ZSM-5 zeolites even under statured humidity. Meanwhile, the ratios of dynamic adsorption capacities at humid and dry atmospheres (qs,wet/qs,dry) of ZSM-5/MCM-41(130) for n-hexane, toluene, and ethyl acetate were 84.89%, 61.46%, and 73.81% respectively. The results will provide guidelines for the preparation of hydrophobic adsorbents.


Subject(s)
Volatile Organic Compounds , Zeolites , Silicon Dioxide/chemistry , Volatile Organic Compounds/chemistry , Adsorption , Zeolites/chemistry , Toluene/chemistry
13.
J Hazard Mater ; 457: 131779, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37307727

ABSTRACT

Little is known about the associations between long-term exposure to wildfire-related fine particulate matter (PM2.5) and mortality. We aimed to explore theses associations using the data from the UK Biobank cohort. Long-term wildfire-related PM2.5 exposure was defined as the 3-year cumulative concentrations of wildfire-related PM2.5 within a 10-km buffer surrounding the residential address for each individual. Hazard ratios (HRs) with 95% confidence intervals (CIs) were estimated using the time-varying Cox regression model. We included 492,394 participants aged between 38 and 73 years. We found that after adjusting for potential covariates, a 10 µg/m3 increase of wildfire-related PM2.5 exposure was associated with a 0.4% higher risk of all-cause mortality (HR = 1.004 [95% CI: 1.001, 1.006]) and nonaccidental mortality (HR = 1.004 [95% CI: 1.002, 1.006]), and a 0.5% higher risk of neoplasm mortality (HR = 1.005 [95% CI: 1.002, 1.008]). However, no significant associations were observed between wildfire-related PM2.5 exposure and mortality from cardiovascular, respiratory, and mental diseases. Additionally, no significant modification effects of a series of modifiers were observed. Targeted health protection strategies should be adopted in response to wildfire-related PM2.5 exposure, in order to reduce the risk of premature mortality.


Subject(s)
Air Pollutants , Air Pollution , Wildfires , Humans , Adult , Middle Aged , Aged , Air Pollutants/toxicity , Air Pollutants/analysis , Biological Specimen Banks , Cohort Studies , Particulate Matter/analysis , United Kingdom/epidemiology , Environmental Exposure/analysis , Air Pollution/adverse effects , Air Pollution/analysis
14.
Opt Express ; 31(10): 15674-15681, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157662

ABSTRACT

Fiber-optic devices working in the visible and near-infrared windows are attracting attention due to the rapid development of biomedicine that involves optics. In this work, we have successfully realized the fabrication of near-infrared microfiber Bragg grating (NIR-µFBG), which was operated at the wavelength of 785 nm, by harnessing the fourth harmonic order of Bragg resonance. The NIR-µFBG provided the maximum sensitivity of axial tension and bending to 211 nm/N and 0.18 nm/deg, respectively. By conferring the considerably lower cross-sensitivity, such as response to temperature or ambient refractive index, the NIR-µFBG can be potentially implemented as the highly sensitive tensile force and curve sensor.

15.
Environ Int ; 174: 107906, 2023 04.
Article in English | MEDLINE | ID: mdl-37030285

ABSTRACT

BACKGROUND: Wildfire imposes a high mortality burden on Brazil. However, there is a limited assessment of the health economic losses attributable to wildfire-related fine particulate matter (PM2.5). METHODS: We collected daily time-series data on all-cause, cardiovascular, and respiratory mortality from 510 immediate regions in Brazil during 2000-2016. The chemical transport model GEOS-Chem driven with Global Fire Emissions Database (GFED), in combination with ground monitored data and machine learning was used to estimate wildfire-related PM2.5 data at a resolution of 0.25°â€ˆ× 0.25°. A time-series design was applied in each immediate region to assess the association between economic losses due to mortality and wildfire-related PM2.5 and the estimates were pooled at the national level using a random-effect meta-analysis. We used a meta-regression model to explore the modification effect of GDP and its sectors (agriculture, industry, and service) on economic losses. RESULTS: During 2000-2016, a total of US$81.08 billion economic losses (US$5.07 billion per year) due to mortality were attributable to wildfire-related PM2.5 in Brazil, accounting for 0.68% of economic losses and equivalent to approximately 0.14% of Brazil's GDP. The attributable fraction (AF) of economic losses due to wildfire-related PM2.5 was positively associated with the proportion of GDP from agriculture, while negatively associated with the proportion of GDP from service. CONCLUSION: Substantial economic losses due to mortality were associated with wildfires, which could be influenced by the agriculture and services share of GDP per capita. Our estimates of the economic losses of mortality could be used to determine optimal levels of investment and resources to mitigate the adverse health impacts of wildfires.


Subject(s)
Air Pollutants , Air Pollution , Fires , Wildfires , Brazil/epidemiology , Particulate Matter/adverse effects , Particulate Matter/analysis , Machine Learning , Air Pollutants/adverse effects , Air Pollutants/analysis , Smoke , Air Pollution/adverse effects , Air Pollution/analysis
16.
Lancet Planet Health ; 7(3): e209-e218, 2023 03.
Article in English | MEDLINE | ID: mdl-36889862

ABSTRACT

BACKGROUND: Short-term exposure to ambient PM2·5 is a leading contributor to the global burden of diseases and mortality. However, few studies have provided the global spatiotemporal variations of daily PM2·5 concentrations over recent decades. METHODS: In this modelling study, we implemented deep ensemble machine learning (DEML) to estimate global daily ambient PM2·5 concentrations at 0·1° × 0·1° spatial resolution between Jan 1, 2000, and Dec 31, 2019. In the DEML framework, ground-based PM2·5 measurements from 5446 monitoring stations in 65 countries worldwide were combined with GEOS-Chem chemical transport model simulations of PM2·5 concentration, meteorological data, and geographical features. At the global and regional levels, we investigated annual population-weighted PM2·5 concentrations and annual population-weighted exposed days to PM2·5 concentrations higher than 15 µg/m3 (2021 WHO daily limit) to assess spatiotemporal exposure in 2000, 2010, and 2019. Land area and population exposures to PM2·5 above 5 µg/m3 (2021 WHO annual limit) were also assessed for the year 2019. PM2·5 concentrations for each calendar month were averaged across the 20-year period to investigate global seasonal patterns. FINDINGS: Our DEML model showed good performance in capturing the global variability in ground-measured daily PM2·5, with a cross-validation R2 of 0·91 and root mean square error of 7·86 µg/m3. Globally, across 175 countries, the mean annual population-weighted PM2·5 concentration for the period 2000-19 was estimated at 32·8 µg/m3 (SD 0·6). During the two decades, population-weighted PM2·5 concentration and annual population-weighted exposed days (PM2·5 >15 µg/m3) decreased in Europe and northern America, whereas exposures increased in southern Asia, Australia and New Zealand, and Latin America and the Caribbean. In 2019, only 0·18% of the global land area and 0·001% of the global population had an annual exposure to PM2·5 at concentrations lower than 5 µg/m3, with more than 70% of days having daily PM2·5 concentrations higher than 15 µg/m3. Distinct seasonal patterns were indicated in many regions of the world. INTERPRETATION: The high-resolution estimates of daily PM2·5 provide the first global view of the unequal spatiotemporal distribution of PM2·5 exposure for a recent 20-year period, which is of value for assessing short-term and long-term health effects of PM2·5, especially for areas where monitoring station data are not available. FUNDING: Australian Research Council, Australian Medical Research Future Fund, and the Australian National Health and Medical Research Council.


Subject(s)
Air Pollutants , Particulate Matter , Particulate Matter/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Environmental Monitoring , Australia , Machine Learning
17.
Science ; 379(6639): 1332-1335, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36996200

ABSTRACT

The Australian continent contributes substantially to the year-to-year variability of the global terrestrial carbon dioxide (CO2) sink. However, the scarcity of in situ observations in remote areas prevents the deciphering of processes that force the CO2 flux variability. In this study, by examining atmospheric CO2 measurements from satellites in the period 2009-2018, we find recurrent end-of-dry-season CO2 pulses over the Australian continent. These pulses largely control the year-to-year variability of Australia's CO2 balance. They cause two to three times larger seasonal variations compared with previous top-down inversions and bottom-up estimates. The pulses occur shortly after the onset of rainfall and are driven by enhanced soil respiration preceding photosynthetic uptake in Australia's semiarid regions. The suggested continental-scale relevance of soil-rewetting processes has substantial implications for our understanding and modeling of global climate-carbon cycle feedbacks.

18.
Sci Total Environ ; 877: 162979, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36948316

ABSTRACT

Development of solar energy is one of the key solutions towards carbon neutrality in China. The output of solar energy is dependent on weather conditions and shows distinct spatiotemporal characteristics. Previous studies have explored the photovoltaic (PV) power potential in China but with single models and low-resolution radiation data. Here, we estimated the PV power potential in China for 2016-2019 using an ensemble of 11 PV models based on hourly solar radiation at the resolution of 5 km retrieved by the Himawari-8 geostationary satellite. On the national scale, the ensemble method revealed an annual average PV power potential of 242.79 kWh m-2 with the maximum in the west (especially the Tibetan Plateau) and the minimum in the southeast (especially the Sichuan Basin). The multi-model approach shows inter-model spreads of 6 %-7 % distributed uniformly in China, suggesting a robust spatial pattern predicted by these models. The seasonal variation in general shows the largest PV power generation in summer months except for Tibetan Plateau, where the peak value appears in spring because the high cloud coverage dampens the regional solar radiation in summer. On the national scale, the deseasonalized PV power potential shows a high correlation with cloud coverage (R2 = 0.71, p < 0.01) but a low correlation with aerosol optical depth (R2 = 0.08, p < 0.05). Sensitivity experiments show that national PV power potential increases by 0.55 % per 1 W m-2 increase of radiation and 0.79 % per 1 m s-1 increase of wind speed, but decreases by 0.46 % per 1 °C increase of air temperature. These sensitivities provide a solid foundation for the future projection of PV power potential in China under climate change.

19.
Environ Pollut ; 323: 121311, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36804885

ABSTRACT

Fire is a major source of atmospheric aerosols and trace gases. Projection of future fire activities is challenging due to the joint impacts of climate, vegetation, and human activities. Here, we project global changes of fire-induced particulate matter smaller than 2.5 µm (PM2.5) and ozone (O3) under 1.5 °C/2 °C warming using a climate-chemistry-vegetation coupled model in combination with site-level and satellite-based observations. Compared to the present day, fire emissions of varied air pollutants increase by 10.0%-15.4% at the 1.5 °C warming period and 15.1%-22.5% at the 2 °C warming period, with the most significant enhancements in Amazon, southern Africa, and boreal Eurasia. The warmer climate promotes fuel dryness and the higher leaf area index increases fuel availability, leading to escalated fire flammability globally. However, moderate declines in fire emissions are predicted over the Sahel region, because the higher population density increases fire suppressions and consequently inhibits fire activities over central Africa. Following the changes in fire emissions, the population-weighted exposure to fire PM2.5 increases by 5.1% under 1.5 °C warming and 13.0% under 2 °C warming. Meanwhile, the exposure to fire O3 enhances by 10.2% and 16.0% in response to global warming of 1.5 °C and 2 °C, respectively. As a result, limiting global temperature increase to 1.5 °C can greatly reduce the risks of exposure to fire-induced air pollution compared to 2 °C.


Subject(s)
Air Pollutants , Air Pollution , Humans , Global Warming , Biodiversity , Temperature , Air Pollutants/analysis , Particulate Matter/analysis
20.
Environ Int ; 171: 107704, 2023 01.
Article in English | MEDLINE | ID: mdl-36542997

ABSTRACT

BACKGROUND: Wildfire-related fine particulate matter (PM2.5) has many adverse health impacts, but its impacts on human epigenome are unknown. We aimed to evaluate the associations between long-term exposure to wildfire-related PM2.5 and blood DNA methylation, and whether the associations differ from those with non-wildfire-related PM2.5. METHODS: We studied 479 Australian women comprising 132 twin pairs and 215 of their sisters. Blood-derived DNA methylation was measured using the HumanMethylation450 BeadChip array. Data on 3-year (year of blood collection and previous two years) average wildfire-related and non-wildfire-related PM2.5 at 0.01°×0.01° spatial resolution were created by combining information from satellite observations, chemical transport models, and ground-based observations. Exposure data were linked to each participant's home address, assuming the address did not change during the exposure window. For DNA methylation of each cytosine-guanine dinucleotide (CpG), and for global DNA methylation represented by the average of all measured CpGs or CpGs in repetitive elements, we evaluated their associations with wildfire- or non-wildfire-related PM2.5 using a within-sibship analysis controlling for factors shared between siblings and other important covariates. Differentially methylated regions (DMRs) were defined by comb-p and DMRcate. RESULTS: The 3-year average wildfire-related PM2.5 (range: 0.3 to 7.6 µg/m3, mean: 1.6 µg/m3) was negatively, but not significantly (p-values greater than 0.05) associated with all seven global DNA methylation measures. There were 26 CpGs and 33 DMRs associated with wildfire-related PM2.5 (Bonferroni adjusted p-value < 0.05) mapped to 47 genes enriched for pathways related to inflammatory regulation and platelet activation. These genes have been related to many human diseases or phenotypes e.g., cancer, mental disorders, diabetes, obesity, asthma, blood pressure. These CpGs, DMRs and enriched pathways did not overlap with the 1 CpG and 7 DMRs associated with non-wildfire-related PM2.5. CONCLUSIONS: Long-term exposure to wildfire-related PM2.5 was associated with various blood DNA methylation signatures in Australian women, and these were distinct from those associated with non-wildfire-related PM2.5.


Subject(s)
Air Pollutants , Wildfires , Humans , Female , Air Pollutants/analysis , DNA Methylation , Australia , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...